Trace Mineral Reference Ranges for Alpaca

RS Ellison
Gribbles-Alpha
Hamilton
New Zealand

INTRODUCTION

The alpaca is a recently introduced species in New Zealand. As a consequence, the data on trace mineral levels normally found in healthy alpaca grazing NZ pasture is sparse. The NZ Alpaca Association, with funding contributions from the MAF Sustainable Farming Fund and Gribbles Veterinary Pathology have undertaken a project to expand this database.

METHODS

Farmers were enrolled in this project if they were willing to have five healthy female adult alpaca bled for mineral testing. The age range was between 1 and 10 years and the definition of healthy was if the farmer and veterinarian taking the samples considered them clinically normal.

Farmers were encouraged to sample the same alpaca four times in the year to represent spring (August to November), summer (December to February), autumn (March to May) and winter (June, July). This was to determine if there were seasonal variations in mineral levels.

Both clotted and EDTA blood was collected from the jugular vein and sent to the local Gribbles Veterinary Pathology lab or direct to Gribbles-Alpha. In most cases, samples were received at the laboratory within 24 hours of collection.

Gribbles-Alpha tested the serum for copper, selenium and vitamin B_{12} and whole blood for selenium.

Selenium in serum and whole blood was determined using a semi-automated fluorimetric method $^{(1)}$. A chemiluminescent method was used to assay vitamin B_{12} (Diagnostic Products, USA).

Serum samples were digested with perchloric acid and assayed by atomic absorption spectrophotometry to measure their copper levels.

Results were recorded in Microsoft Excel and plotted according to analyte value, one plot per season. If the results appeared normally distributed, then the arithmetic mean and SD were calculated. If the data was not normally distributed, it was log transformed and mean and SD recalculated. Any result outside three SD units was considered an outlier, was removed and mean and SD recalculated.
RESULTS

A total of 15 alpaca farms participated in this study. Eleven of these farms sampled alpaca in spring, three in summer, five in autumn and ten in winter. Samples from all four seasons were received from just one farm. Three farms sampled three times, five farms sampled twice and six farms sampled just once.

The alpaca farms were scattered throughout both islands.

Too few farms were sampled three or four times through the year for an assessment of seasonal variation to be made.

The farm data from the first bleeding was used for the reference range study. This means the reference range data was derived from spring (11 farms, 53 animals), autumn (one farm, 5 animals) and winter (three farms, 13 animals). Each farm sampled 5 animals except for 4 on two farms and 3 on one farm. In total, serum Se was measured in 69, serum copper in 70, and serum B_{12} and whole blood Se in 71 alpaca.

The data is summarized as frequency distribution graphs in figures 1-4. The reference ranges in table 1 are the 95% confidence intervals for the different analytes (expressed as 2.5 and 97.5 percentiles).

Table 1: 2.5 and 97.5 percentiles for four minerals from healthy adult alpaca

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>2.5%</th>
<th>97.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum copper</td>
<td>umol/l</td>
<td>5.2</td>
<td>16</td>
</tr>
<tr>
<td>Serum B_{12}</td>
<td>pmol/l</td>
<td>70</td>
<td>880</td>
</tr>
<tr>
<td>Serum Se</td>
<td>nmol/l</td>
<td>240</td>
<td>2400*</td>
</tr>
<tr>
<td>Blood Se</td>
<td>nmol/l</td>
<td>350</td>
<td>2800*</td>
</tr>
</tbody>
</table>

* Log transformation did not completely normalize the distribution of serum Se or blood Se. The 97.5 percentile for both these analytes was a lot higher than the highest measurement in the study. The values quoted here are the highest values recorded in this study.

Correlation between serum selenium and whole blood selenium

Both the concentration of selenium in serum and whole blood were measured in the alpaca. The same samples were used to determine the regression equation between blood Se and serum Se as were used for the reference range study (15 farms, 69 animals). The relationship is represented graphically in figure 5. The regression equation is $y=1.054x + 144.6$ where $y =$ blood Se in nmol/l and $x =$ serum Se in nmol/l. The correlation coefficient (r^2) = 0.86

There was no statistically significant difference in the relationship between blood Se and serum Se between the four seasons.
DISCUSSION

The reference ranges used in New Zealand for mineral levels in sheep and cattle are generally production related\(^2\). By using these ranges, it is possible to predict whether a group of animals will give a production response to supplementation by comparing their mean analyte level with the reference range. These ranges have been developed as a result of many production trials over the years which is a costly and time consuming process.

When new production animal species, like alpaca are introduced into New Zealand, it is generally not possible in the short term to develop production related reference ranges because the industry is small and the level of financial investment required is quite high. However, there is still a need for a benchmark of mineral levels to be developed to help veterinarians interpret blood and liver mineral levels. Although production related reference ranges are the ideal, useful information can be gathered by establishing the range of mineral levels in clinically normal productive animals grazing typical NZ pasture. It can be assumed that if an animal’s levels are within such a range, then they will not be severely deficient or at risk of severe toxicity.

The ranges established from this study will be valuable for the alpaca farmers and their veterinarians. Using these ranges, they will be able to determine if a mineral deficiency is a possibility on their property and will have ranges against which they can monitor the effects of any supplementation that is advised. If levels stay within these ranges, then the risks of severe deficiencies or toxicities developing are low.

A correlation coefficient of 0.87 between serum and whole blood selenium is quite high and suggests that both analytes are useful indicators of an alpaca’s selenium status. In cattle, serum selenium levels change more rapidly than whole blood selenium when dietary selenium intakes change and this has led to the widespread adoption of the serum test in cattle herds that are on supplementation programmes\(^3\). Some of the alpaca that were enrolled in this study were being supplemented with selenium and others not. This information was not collected and evaluated in this study so it is not possible to determine if the relationship changes with supplementation in alpaca as it does in cattle.

The distribution of serum B\(_{12}\) levels was markedly skewed to the right. This was corrected using log transformation. Even though the other analytes were not so skewed, log transformation resulted in a more guassian distribution for these as well. Both serum and blood selenium, however were still sufficiently skewed after log transformation that the 97.5% percentile value had to be replaced by the highest value in the study.

Table 2 compares the results of this study with a similar alpaca study from Australia and the reference ranges currently used for cattle in New Zealand.
Table 2: Comparison of reference ranges for NZ and Australian alpaca and NZ cattle.

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
<th>Alpaca</th>
<th>Alpaca</th>
<th>Cattle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum selenium</td>
<td>nmol/l</td>
<td>240-2400</td>
<td>150-1000</td>
<td></td>
</tr>
<tr>
<td>Blood selenium</td>
<td>nmol/l</td>
<td>350-2800</td>
<td>1330-1890</td>
<td>250-2000</td>
</tr>
<tr>
<td>Copper</td>
<td>umol/l</td>
<td>5.2-16</td>
<td>7.6-10.2</td>
<td>8.0-20.0</td>
</tr>
<tr>
<td>Vitamin B$_{12}$</td>
<td>pmol/l</td>
<td>70-880</td>
<td>146-416</td>
<td>>100</td>
</tr>
</tbody>
</table>

The alpaca ranges are not that dissimilar to the production related reference ranges used for NZ cattle. Serum copper levels are generally lower but even in cattle, individual animals can be as low as 6.5 umol/l without showing any production effects. This is because the production related reference ranges used in cattle are based on means of the group being tested and individual animals can have levels below these ranges, as long as the mean is within the range.

In general, the Australian ranges are narrower. They sampled five alpaca herds compared with 15 in this study, which could be the explanation for the reduced ranges. Another difference is that the low end of the range for blood selenium was considerably higher than the low end of the range in the NZ study. This occurred despite some of the pasture in the Australian study having relatively low selenium levels (0.03 ppm). Although not stated in the paper, the likely explanation for this difference is that all the alpaca in the Australian study were being supplemented with selenium whereas only some of the alpaca in the NZ study were.

It was decided to use a sample number of 5 for this study for two main reasons:

1. This is similar to the recommended sample numbers for cattle testing (serum Se = 4, whole blood Se = 4, serum Cu = 6, serum B$_{12}$ = 5)
2. Most alpaca herds are small with 80% being under 20 animals. Five animals therefore represents a significant proportion of most herds.

In cattle and sheep, the following formula is used to calculate the appropriate number of animals to sample. This formula indicates that sufficient animals should be sampled to make sure the difference between the sample mean and the true mean (if all animals in a group were sampled), is no more than half the marginal range in 90% of cases.

$$n \geq S^2 \times 1.65^2 / \text{(half the marginal range)}^2$$

S = SD of individual values within the sample and 1.65 corresponds to the 90% probability level in a standard normal distribution. The estimation of S is based on large numbers of measurements being taken (at least 100 groups).

It is not possible from this study to verify if a sample number of 5 is appropriate as only 15 groups were sampled (i.e. the estimate of S is not robust) and we don’t know the size of the marginal ranges. However, the estimates for S for serum Cu and vitamin B$_{12}$ in this study did suggest that five samples is likely to be appropriate for
these analytes. In contrast, the between animal variability for both serum Se and blood Se was unexpectedly large and 5 samples may not be enough, particularly in larger herds. A possible explanation for this could relate to different levels of selenium supplementation between animals within herds. Because of the small herd sizes, and the close association of each animal with its owner, it is possible that some animals on a farm are being supplemented for various reasons whereas others are not. One technique to reduce the effect of this large within group variation is to sample the same animals each time and compare levels of the same animals over time.

ACKNOWLEDGEMENTS

This project was coordinated by Sue Cumberworth, AgriBusiness Group, Christchurch on behalf of the New Zealand Alpaca Association. The study was partly funded by the MAF Sustainable Farming Fund with contributions from Gribbles Veterinary Pathology. The enthusiasm of the alpaca farmers who contributed to the study and the veterinarians who collected the blood samples is gratefully acknowledged as is the technical expertise of the technicians who analysed the samples at Gribbles Alpha and the assistance of Jude Armstrong of Gribbles Veterinary Pathology with data recording and analysis.

REFERENCES

1. Watkinson JH. Fluorometric determination of selenium in biological material with 2,-3 diaminonaphthalene. Analytical Chemistry 38, 92-7, 1966

Figure 1: Frequency distribution for serum selenium

Figure 2: Frequency distribution for blood selenium
Figure 3: Frequency distribution for serum copper

Figure 4: Frequency distribution for serum B12
Figure 5: Regression of serum versus blood selenium

\[y = 1.054x + 144.6 \]

\[R^2 = 0.8572 \]